注意：

1．所有題目均需詳列計過程，否則不予計分。
2．除計算機外，禁止使用如書籍，筆記，講義等任何形式之輔助工具。
3．請於試卷謄寫下列之 Honor Code 。
＂本人於此次考試中沒有接受任何形式之外部協助作答＂（簽名）

1．If $P=130 \mathrm{~N}$ ，determine the angular acceleration of the 22.5 kg roller．Assume the roller to be a uniform cylinder and that no slipping occurs．

$$
\begin{aligned}
& I_{G}=\frac{1}{2} m r^{2}=\frac{1}{2}(22.5)(0.45)^{2}=2.278 \mathrm{~kg} \cdot \mathrm{~m}^{2} \\
& +\Sigma F_{x}=m\left(a_{G}\right)_{x} ; \quad 130 \cos 30^{\circ}-F_{f}=22.5 a_{G} \\
& +\uparrow \sum F_{y}=m\left(a_{G}\right)_{y} ; \quad \begin{array}{l}
N-22.5(9.81)-130 \sin 30^{\circ}=0 \\
\\
N=285.73 \mathrm{~N}
\end{array} \\
& +\Sigma M_{G}=I_{G} \alpha ; \quad F_{f}(0.45)=2.278 \alpha-(2) \\
& \text { Since the roller rolls without slipping } \\
& \quad a_{G}=\alpha r=0.45 \alpha \quad-(3) \\
& \text { Solving }(1)-(3) \quad \alpha=7.413 \text { rad } / \mathrm{s}_{\text {2 }}^{2} \text { \# Ans } \\
& \Rightarrow \alpha
\end{aligned}
$$

2. Rod $A B$ rotates counterclockwise with a constant angular velocity $\omega=3 \mathrm{rad} / \mathrm{s}$. Determine the velocity and acceleration of point C located on the double collar when $\theta=45^{\circ}$. The collar consists of two pin-connected slider blocks which are constrained to move along the circular path and the $\operatorname{rod} A B$.

SOLUTION

$$
\begin{aligned}
& \mathbf{r}_{C / A}=\{0.400 \mathbf{i}+0.400 \mathbf{j}\} \\
& \mathbf{v}_{C}=-v_{C} \mathbf{i} \\
& \mathbf{v}_{C}=\mathbf{v}_{A}+\Omega \times \mathbf{r}_{C / A}+\left(\mathbf{v}_{C / A}\right)_{x y z} \\
& -v_{C} \mathbf{i}=0+(3 \mathbf{k}) \times(0.400 \mathbf{i}+0.400 \mathbf{j})+\left(v_{C / A} \cos 45^{\circ} \mathbf{i}+v_{C / A} \sin 45^{\circ} \mathbf{j}\right) \\
& -v_{C} \mathbf{i}=0-1.20 \mathbf{i}+1.20 \mathbf{j}+0.707 v_{C / A} \mathbf{i}+0.707 v_{C / A} \mathbf{j} \\
& -v_{C}=-1.20+0.707 v_{C / A} \\
& 0=1.20+0.707 v_{C / A} \\
& v_{C}=2.40 \mathrm{~m} / \mathrm{s} \\
& v_{C / A}=-1.697 \mathrm{~m} / \mathrm{s} \\
& \mathbf{a}_{C}=\mathbf{a}_{A}+\dot{\Omega} \times \mathbf{r}_{C / A}+\Omega \times\left(\Omega \times \mathbf{r}_{C / A}\right)+2 \Omega \times\left(\mathbf{v}_{C / A}\right)_{x y z}+\left(\mathbf{a}_{C / A}\right)_{x y z} \\
& -\left(a_{C}\right)_{\mathbf{i}} \mathbf{i}-\frac{(2.40)^{2}}{0.4} \mathbf{j}=0+0+3 \mathbf{k} \times[3 \mathbf{k} \times(0.4 \mathbf{i}+0.4 \mathbf{j})]+2(3 \mathbf{k}) \times[0.707(-1.697) \mathbf{i} \\
& \quad+0.707(-1.697) \mathbf{j}]+0.707 a_{C / A} \mathbf{i}+0.707 a_{C / A} \mathbf{j} \\
& -\left(a_{C}\right)_{t} \mathbf{i}-14.40 \mathbf{j}=0+0-3.60 \mathbf{i}-3.60 \mathbf{j}+7.20 \mathbf{i}-7.20 \mathbf{j}+0.707 a_{C / A} \mathbf{i}+0.707 a_{C / A} \mathbf{j} \\
& -\left(a_{C}\right)_{t}=-3.60+7.20+0.707 a_{C / A} \\
& -14.40=-3.60-7.20+0.707 a_{C / A} \\
& a_{C / A}=-5.09 \mathrm{~m} / \mathrm{s}^{2} \\
& \left(a_{C}\right)_{t}=0
\end{aligned} \quad \text { Ans. } \quad \text {. }
$$

Thus,
$a_{C}=\left(a_{C}\right)_{n}=\frac{(2.40)^{2}}{0.4}=14.4 \mathrm{~m} / \mathrm{s}^{2}$
$a_{C}=\{-14.4 \mathbf{j}\} \mathrm{m} / \mathrm{s}^{2}$
Ans.
3. The $230-\mathrm{kg}$ beam is supported at A and B when it is subjected to a force of $4.5-\mathrm{kN}$ as shown. If the pin support at A suddenly fails, determine the beam's initial angular acceleration and the force of the roller support on the beam. For the calculation, assume that the beam is a slender rod so that its thickness can be neglected.

$$
\begin{aligned}
& \pm \sum F_{x}=m\left(d_{G}\right)_{x} ; \quad 4500\left(\frac{4}{5}\right)=230\left(a_{G}\right)_{x} \\
& +\downarrow \sum F_{y}=m\left(a_{G}\right)_{y} ; \quad 4500\left(\frac{3}{5}\right)+230(9.81)-B_{y}=230\left(a_{G}\right)_{y} \\
& G+\sum\left(M_{k}\right)_{B} ; 230(9.81)(0.9)+4500\left(\frac{3}{5}\right)(2.4)=230\left(d_{G}\right)_{y}(0.9)+\left[\frac{1}{12}(230)(3)^{2}\right] \alpha \\
& a_{B}=a_{G}+a_{B / G} \\
& -d_{B} \hat{i}=-\left(a_{G}\right)_{x} \hat{i}-\left(d_{G}\right)_{y} \hat{j}+\alpha(3) \hat{j} \\
& \left(d_{G}\right) y=\alpha(3) \\
& \alpha=23.71 \mathrm{rad} / \mathrm{s}^{2} \# \text { Ans. } \\
& B_{y}=48.33 \mathrm{~N} \text { \#ns. }
\end{aligned}
$$

4. The $10-\mathrm{kg}$ uniform slender rod is suspended at rest when the force of $F=150 \mathrm{~N}$ is applied to its end. Determine the angular velocity of the rod when it has rotated 90° clockwise from the position shown. The force is always perpendicular to the rod.

Kinetic Energy. Since the rod starts from rest, $T_{1}=0$. The mass moment of inertia of the rod about O is $I_{0}=\frac{1}{12}(10)\left(3^{2}\right)+10\left(1.5^{2}\right)=30.0 \mathrm{~kg} \cdot \mathrm{~m}^{2}$. Thus,

$$
T_{2}=\frac{1}{2} I_{0} \omega^{2}=\frac{1}{2}(30.0) \omega^{2}=15.0 \omega^{2}
$$

Work. Referring to the FBD of the rod, Fig. a, when the rod undergoes an angular displacement θ, force \mathbf{F} does positive work whereas \mathbf{W} does negative work. When $\theta=90^{\circ}, S_{W}=1.5 \mathrm{~m}$ and $S_{F}=\theta r=\left(\frac{\pi}{2}\right)(3)=\frac{3 \pi}{2} \mathrm{~m}$. Thus

$$
U_{F}=150\left(\frac{3 \pi}{2}\right)=225 \pi \mathrm{~J}
$$

$$
U_{W}=-10(9.81)(1.5)=-147.15 \mathrm{~J}
$$

Principle of Work and Energy.

$$
\begin{aligned}
& T_{1}+\Sigma U_{1-2}=T_{2} \\
& 0+225 \pi+(-147.15)=15.0 \omega^{2} \\
& \quad \omega=6.1085 \mathrm{rad} / \mathrm{s}=6.11 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

Ans.

5. In the eccentric shown, a disk of 50 -mm-radius revolves about shaft O that is located 12 mm from the center A of the disk. The distance between the center A of the disk and the pin at B is 200 mm . Knowing that the angular velocity of the disk is 900 rpm clockwise, determine the velocity of the block when $\theta=30^{\circ}$.

$$
\begin{aligned}
& (O A) \sin \theta=(A B) \sin \beta \\
& (0.012) \sin 30^{\circ}=\frac{0.2}{\cos \beta} \sin \beta \\
& \Rightarrow \tan \beta=0.03 \\
& \Rightarrow \beta=1.718^{\circ} \\
& \omega_{0 A}=900 \mathrm{rPM}=\frac{900}{60}(2 \pi)=94.25 \mathrm{rad} / \mathrm{s} \\
& v_{A}=(0 A) \omega_{0 A}=(0.012) 94.25=1.131 \mathrm{~m} / \mathrm{s} \text { Z } \\
& v_{B}=v_{A}+v_{B / A} \quad\left[v_{B} \leftarrow\right]=\left[v_{A} 760^{\circ}\right]+\left[v_{A / B} \mathrm{~F} \beta\right] \\
& 90^{\circ}-\beta=88.28^{\circ} \\
& \varphi=180^{\circ}-\left(90^{\circ}-\beta\right)-60^{\circ}=31.72^{\circ} \\
& \frac{\sqrt{B}}{\sin \varphi}=\frac{\sqrt{A}}{\sin \left(90^{\circ}-\beta\right)} \\
& v_{B}=0.594 \mathrm{~m} / \mathrm{s} \text { 井 Ans. }
\end{aligned}
$$

6. The $150-\mathrm{kg}$ uniform crate rests on the $10-\mathrm{kg}$ cart. Determine the maximum force P that can be applied to the handle without causing the crate to slip or tip on the cart. The coefficient of static friction between the crate and cart is $\mu_{s}=0.2$.

Equation of Motion. Assuming that the crate slips before it tips, then $F_{f}=\mu_{s} N=0.2 \mathrm{~N}$.
Referring to the FBD and kinetic diagram of the crate, Fig. a

$$
\begin{array}{rlrl}
+\uparrow \Sigma F_{y}=m a_{y} ; & N-150(9.81) & =150(0) \quad N=1471.5 \mathrm{~N} \\
\pm \Sigma F_{x}=m\left(a_{G}\right)_{x} ; & 0.2(1471.5) & =150 a \quad a=1.962 \mathrm{~m} / \mathrm{s}^{2} \\
\varsigma+\Sigma M_{A}=\left(M_{k}\right)_{A} ; & 150(9.81)(x) & =150(1.962)(0.5) \\
x & =0.1 \mathrm{~m}
\end{array}
$$

Since $x=0.1 \mathrm{~m}<0.25 \mathrm{~m}$, the crate indeed slips before it tips. Using the result of a and refer to the FBD of the crate and cart, Fig. b,

$$
\pm \Sigma F_{x}=m\left(a_{G}\right)_{x} ; \quad P=(150+10)(1.962)=313.92 \mathrm{~N}=314 \mathrm{~N}
$$

Ans.

